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Utilizing the facts (i) that the number of particles in the many-boson system 
is conserved and (ii) that the Hamiltonian is Hermitian, a new set of variables 
comprising "action" and "angle" variables has been introduced. These 
variables are conjugate in the "mean" and provide a rigorous approach 
to introducing phase variables for "total-number-conserving many-boson 
systems." 
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1. I N T R O D U C T I O N  

Referring to the second-quantizat ion formalism of  quan tum mechanics, let 
a/c and a/c + be the operators which respectively annihilate or  create a boson  of  
m o m e n t u m  K. One defines a coherent  state m I c~/c) satisfying 

aK l o~x) ~ OgK I O~K) (1) 

where ~K can be any complex number.  It  is well known a-~) that  these states 
] ~K) do not  form an or thogonal  set, but  they are complete, and, in fact, they 
are overcomplete. A beautiful review of  these states is given by Glauber.  m 

These states have been extensively used in optics by Glauber  and in 
describing the irreversible processes in anharmonic  crystals by Carruthers and 
Dy. ~4~ It  was naturally felt that  they could be used for  interacting Boson 
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systems, too. (5) However, all such attempts {5,~ suffer from the fault that they 
forraally confine themselves to a mathematical description of the density 
matrix in terms of coherent states, forgetting the physical fact that the many- 
boson system is basically different from the system of phonons, due to the 
finite mass of the particles, and that this restriction, expressed in terms of the 
conservation of the number of particles, should be explicity incorporated in 
the description of the physical system. In what follows, we shall see how this 
can be done. We shall further see that it is this restriction that allows one to 
define phase variable ~,c which is conjugate in the mean to the variable NK, 
the number of bosons in the momentum state K. 

2. D E N S I T Y  M A T R I X  

Let a system of bosons be described by a Hamiltonian (in the second- 
quantized formalism) 

H = Ho -5 V, where Ho = ~ coteaK+ate, V = V({aK +, ate}) (2) 
K 

ate and ate + being the annihilation and the creation operators, respectively, 
for a boson in the momentum state K. Here, V({ate +, ate}) is the interaction 
potential, which can be written in a convergent series of the form 

V({aK+, ate}) = y ,  V{.,,,m,,~(aK+)"K(a,3 "K (3) 
{n/C,mK} 

Let us introduce the coherent states by 

ate t ~te) = ~ K / ~ , : )  

( ~  i ate+ = ~te*(~te t 
(4) 

where aK is a complex number. We also write (as usual) 

aK = (JK/h)l/2e i ~  (5) 

Let p be the density matrix of the system satisfying the von Newmann 
equation 

iX ~p/at = [H, p] (6) 

It can be easily shown by using the properties of complex variables that, 
given any observable 

A({ax +, ax}) = ~ A{,~x,,~K}(ai:+)nX(ate) '~x (7) 
{nK,mK} 
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(a convergent series), the mean value of A can be written as (z,4,51 

(A) = Tr Ap 

= f[exp(--;la,v[O]A({~ 

X[exp(~xl~176 

where 

with 

p({~K*, ~K}) = <{~,:} I p '~ {~/d> 

(8) 

[ {aK}> = I-i] aK> (9) 
K 

This shows that it is enough to know the function p({~r*, C~X}), which gives 
the complete statistical description of the system. This is possible because the 
functions P({I?K*, C~K}) formed out of the nondiagonal elements of the density 
matrix in terms of the coherent states can be obtained as boundary values by 
analytic continuation of the diagonal elements (OK and C~K* are treated as 
independent), m As noted by many, 1z,4,5~ p({C~x*, as}) satisfies the equations 
[due to (6)] 

ih 0~({~K*, o~K})/~t = [H({~*, ~ /~*})  -- H+({~K, ~/e~K})] ~({~*, ~}) 
(10) 

fi({aK*, C~X})= p exp (~ ] C~K[ u) 

where H + is the Hermitian conjugate of H. 

3. N U H B E R  C O N S E R V A T I O N  A N D  A C T I O N - A N G L E  
VARIABLES 

Let ] nK) be the state vectors in the Fock space, i.e., the space spanned 
by the eigenvectors of the operator az:+ax, 

al~+alc.[ nK) = nK] nK), ax.[ ni~) = V/;~K] rile -- l )  (11) 

aK + In,:) = ~ l n K +  1) (12) 

The coherent state ] ~X) can be expanded in terms of the complete orthonor- 
mal set {[ nK)}. The expansion is 

[ ~K) = [exp(-- �89 e~x 12)] 2 [~ nx) (13) 
nK 
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The density function p({e~X*. C~K}) = {{~K} [ P J {C~K}) can therefore be written 
a s  

= (ex - 12) 
{~K,~ZK} K 

• ]-[ [(C~,V*I~K~KK/(nK: mK!)I/Zl ({inK} [ p i {nK}> (14) 
K 

Let us introduce the variables 

nK § mK = 2NK 

and define 

n K - -  m x  = VK (t5) 

A{,}K({NK}) = ({NK -- �89 l A [ {NK 4- �89 (16) 

where A is any operator. 
From (1) and (5), we have 

P({JK, cK})=  ~ P{,KI({JK))exp ( i ~  VKr (17) 
\K / 

where 
Z ~,~ = o (18) 
K 

due to number conservation and 

• ]-[ {(JK/h)NK/[(NK 4- �89 -- �89 p{~K}({NK} ) (19) 
K 

p{v~}({NK} ) satisfies the equation {8) 

ih Op{vK{({NK})/~t 

= Z [Hf'K-VK'}({NK 4- �89 p{~K'}({NK -- �89 4- �89 
{vr. '} 

-- H{.K_vK'}({NK -- �89 p{,/I({NK 4- �89 -- VK')})] 

= Z {[exp(�89 a/eNK)] H(,K_,K'}({NK})[exp(-- �89 O/eNx)] 
(~K '} 

- -  [exp(-- �89 O/eNK)1 H{,K_,x.}({Nzc})[exp(�89 a/ONK)1} p{,K'}({NK}) 
(20) 

Equation (18) is the crucial one in our discussion, incorporating the fact 
that the bosons we are dealing with are finite-mass particles. Since the set 
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{exp i N'.XVKCK} is complete and orthonormal, (17) defines the unique 
Fourier series of P({JK, Cx}). The variables JK and CK such that the Fourier 
series (17) ofp({J~v, r is restricted to the relation (18) will be defined as the 
"action" and the "angle" variables of the quantum statistical system. These 
variables are therefore distinct from those of Carruthers et al. ~) and others (~,6) 
who make use of the "amplitudes" and "phases" of ~'s without any physical 
restrictions. 

4. CONJUGATE PROPERTY OF ix ,  Nx, AND ~K 

Now, from (17) and (19), we have 
oo 

<JK> = f Jxpo({Jx}) [I (dJK/h) 
0 K 

= [<N~> + 1]h 

<NK> = ~ NKpo({NK}) 
{NK} 

ao 

f po({JK})~l dJK = Z po({NK})= i 
o k { N x }  

Let us define 

where 

w({JK, CK}) - <{~K) 1 A I {~K}> 

expressed in terms of {JK, Cx} by (5), 

A({NK, r = ~ A{vK}({NK}) exp i ~ v,vr 
{~K} K 

where A is any operator. 
Let us further define 

co 277 

<JK> = f f JIrp({JK, Cx}) l-[ (dJx/h)(dr 
0 0 K 

<Na:> : ~ f N,p({Nx, ~K})~ (dCx/2w) 

---- Z NKpo({NK}) 
{NK} 

2rr 

<r = f CKp({JK, CK}) 1--[ (dJKh)/(dCK/2rr) 
0 K 

(21) 

(22a) 

(22b) 

(23) 

(24) 

(25) 

822/5/3-3 
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Observation | .  In definition (24), one must note carefully that a 
single qSK picks out a single v x  in the integrals and all the other v,c, (K' # K) 
must vanish. Now, due to number conservation, Y, K VX = 0; hence this 
single vx  must tend to zero. It is in this sense that all the "means" will be 
defined so that after the integration is over, one must take the limit of vx  ~ 0 
to impose the physical restriction of number conservation. This fact must be 
accepted as a convention. 

Proposi t ion I .  
the equations 

d<N,:>/dt = <NK> = (1/h)<SH({NK, CK})/~r 

d(r  --  ( r  = --  (1/h)<SH({Nx,  Cx})/SNK> 

Proof. Using (24) and (17), 

d<U~>/dt = (1/h) <&>~tit 

cO 2 rr 

= (l/h) f f JK[Sp((JK, r 
0 0 

• 1] (dJk/h)(dr 
k 

= Y, Nx[ap{o~({NK})/at] 
N K 

[using Eq. (20) and observation 1] 

= (1/ih) Z Z NK[<{Nx 47 vK}] H I  {Ng}}p{v~}({NK 5- �89 
VK N K  

-- ({NK ] HI  {NK -- vK}> p{,x}({NK --  �89 

= (1/ih) Z Z {(NK' - -  �89 § �89 I O I {N~' - -  �89 
v K ArK ~ 

1 --  (NK' + �89 47 �89 ] H I {NK' --  ~vK}>} p{vx}({Nx }) 

1_ = --  (1/ih) Z ~ VK({NK' 47 �89 {NK' - -  2vx}>pv~c{NK} 
VK N K 

P t 
= (i/h) Z Z *cH-vK({Nlc}) P{,x}({ tc }) 

VK N K 

c x  and N,v are conjugate in the "mean" and satisfy 

(26a) 

(26b) 

(27) 

= (1/h)<SH+({NK, Cx})/8r 
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(the Hermitian conjugate refers to the Fock space). Since H is Hermitian, 

_i/eH({Nx, Cg})> 
<S~> h \ oCK " 

d ~ "~ @({JK, r {d i ,q l  riCK ] 

~P{.N}({NK}) N~c! 
: Z Z Ot [(NK-- �89 (NK + �89 1/2 

{VK) {NK} 

1] 
Noting that ~ x  v r  = 0 and 

[Op{o}({Ux})/Ot] = 0 
{NK} 

d<r = lim ~ ~ ~ (1/ivK)(1/ih) 

(.'. Trp  = 1) 

X [H{~K_.K.}({NK' -b �89 -- H{.K_.K.}({Nx' -- �89 p{.K'}({N}K" 

----- (I/h) ~ ~ [OH{_~.}({~})/aN~]R{.K.}({NI~'}) 
{NK} {~K '} 

= -- (1/h)@H+({NK, ~K})/~NK> 

(the Hermitian conjugate refers to the Fock space). Since H is Hermitian, 

d<~oK>/dt = -- (1/h)@H({Nx,  CK})/SNK> (29) 

Proposit ion 2. From (22a), (23), (25), (28), and (29), it also follows 
that 

<]~> = <~({J~. r162 
(30) 

<r = _ <~,({j~. r 

Instead of giving a formal proof of the relations (30), we shall verify them for 
the many-boson Hamiltonian (in familiar notation) 

H = ~ coKaK+aK + (1/2S9) ~ <12 I V t 34> aKlax~ + + aK~ax~ (31) 
K 1234 
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Then ~({J ,  ~}) becomes [according to (22a)1 

where 

Let 

so that 

JC'({JK, q~K}) = ~ oJK(atclh) + (l/2g2h 2) ~ (12 1 v i 34} 
K 1234 

X (J14J3.14) 1/2 e -i(~1+~r4'a-4'') 

= ~ H~I.~(J1, J2) e i('J'l+'~'2+''') 
v l , v  $ 

s-&~({aD = Y, <o~(J./h) I-[ &..o 
K q 

+ (l/2Dh ~) ~ (121 V l 34}(J~JJJ4) 1/2 
1234 

X ~Vl,1~v2,13v3,--lb,.,4 -- 1 I - I  ~Vq,0 
q :/:1,2,3,4 

eg,x,N K = [(Nsc -- �89 (NK -t- �89 1/2 

C~I,N = [(N -t- �89 (N -- �89 

From (16) and (31), 

Hi.}({Nx}) = Z ogscNK 1-[ Sv,,o 
K q 

+ (112o) ~ (121 v134)(N3 q- �89 4 -~ �89 
1234 

A. C. Biswas 

(32) 

X f~ [ e x p -  Y', (Jq/h)] ~ 'ff2H(_.xI({JK})dJq 

{"x} {NK} q 

and 

<~H({JK, @~'})/'W'~7 

X ( N  1 "-}- 1 )1 /2 (N  2 -~- �89 ~va,_l(~vs,_l(~vl,l(%,2,1 f l  ~r (33)  
q ~1,2,3,4 
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= i Z vX Z P{~'K}({Nx}) 1 Z (Nx + 1) 1~ 8.,.o 
{'K} {Nx} X 

-{- �89 ~. (12 j V[ 34}(N1 --I- �89 + �89 
1234 

• (N3 + �89 + ~)~/~ ~,~.-1~,..-1~,,.~,,.1 ~ ~l.~.~.~I-I &~.o I 

: i ~ VK ~. P{.K}({NK}) IH{-..}({NK}) -~- ~. ~o~: ~ 8.~.o 1 
{,,~} {NK} 

= ~ VX 2 P{~X}({X})H{-.x}({NK}) 
{~X} {NK} 

= ~ d < N x ) / d t  = d < ~ ) / m  (34) 

Again, 

<a~({Jx, r 
oo 

== f [OH({Jx, CK})/OJx] p({,/K, Cx}) I ]  dJx(r 
0 K 

{.x} {NK) t. K J 
oo 

• f d{YK}[~H{_~xi({JK})/~Jx ] exp -- X (JK/h) 
0 1( 

= Y, Z [(o~,,/h) 11 ~o.o%,N~ 
{~K} {NK} L q 

-k- (t/.-Qh z) Z (k2 I V t 34}(Nz + �89 -~ �89 
234, 

X (N4 + �89 + �89 18~ :8. 18. 1 
�9 K ' - -  2,-- 3 ,  4 ,  

q-~k,2,3,4 

+ (1/~h~) F. <34 i v l kZ>(N~ + ~)l/~(U, + ~)1/, 
234 

: -1/2 

{.x} {Nx} 

(I/h)<~H({U,~, r = - -  d< r (35) 
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Discussion. The necessity of using phase variables in quantum statistics 
has been very much felt during recent years. In fact, phenomena like the 
tunneling effect in superconductors or similar effects in superfluid helium 
strongly suggest that these systems Could be well-described in terms of 
"number" and "phase" as microscopic variables conjugate to one another. 
As has been observed by many, (~) a "phase" operator conjugate to the 
"number" operator does not exist. This problem has been approached 
mainly along the following lines. 

1. One assumes without worrying about rigor that there exists a phase 
operator q) conjugate to the "number" operator N, argument being that the 
error made is small for large systems. This is the point of view adopted by 
Anderson. (9) 

2. Instead of taking phase as the operator conjugate to N, one (2,10> uses 
a periodic function of the phase operator q). 

3. One (6) uses coherent states which automatically introduce phases. But 
the states, being overcomplete, one uses a quasiprobability function. 

The problem with the first approach has been discussed by Carruthers 
and Nieto. (~) Since one does not know exactly what error one is making in 
this assumption, one cannot use it in a rigorous formulation. Besides, no 
many-body Hamiltonian can be expressed in terms of only the number 
operator and (say) "phase" operators. So, practically, one cannot make use 
of them. 

The second approach does not give a unique description. One does not 
know why one should use one or the other of the periodic functions of the 
"phase." Besides, the "phase" itself has a physical meaning, given a periodic 
function of the "phase" does not determine the phase. 

The third approach suffers from the fact that the quasiprobability 
functions cannot describe strictly quantum mechanical systems. One does not 
know what connection they have with the physical distributions. In fact, it is 
misleading to use them for such systems as superfluids where zero-point 
quantum fluctuations play the most important role. 

Though we have used coherent states to introduce the "action-angle" 
variables, our approach differs from the earlier ones in the combined use of 
the following facts: (1) The function O({aK*, aK}) is the relevant distribution 
for a many-boson system. (2) Number conservation should be explicitly used 
in the formulation. 

Equations (26) and (30) are exact and are directly applicable to many- 
boson systems. The physical meaning of the "phase" is clearly brought in by 
these equations, giving that the time derivative of the "mean" value of the 
phaseCx equals the negative of the local chemical potential /~K : @H/~NK} 
for a number-conserving boson system. We have used them in the discussion 
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of  tunnel ing effects in superconductors  and  for  deriving exact  h y d r o d y n a m i c  
equat ions  for  many -boson  systems. W e  shall  no t  discuss them here,  and  the 
re levant  references (z4,15) should  be consul ted.  
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